
cEi5 _- __ l!!l!!! 
EL.SEYlER Journal of Geometry and Physics 23 (1997) 235-246 

JOURNAL OF 

GEOMETRY AND 

PHYSICS 

Universal ZN -graded differential calculus 
Michel Dubois-Violette s*, Richard Kerner ’ 

a Laborutoire de Physique The’orique et Huutes Energies, UniversitP Paris-XI, CNRS - URA DO 06.<. 
UniversitP Paris-Sud, BBtiment 211, 91405 Orsay, France 

h Laboratoire de Gravitation et Cosmologie Relativistes. Universite’ Pierre-et-Marie-Curie. 
CNRS ~ URA DO 769, Tour 22, 4-Pme &age, Bo/te 142. 4, Place Jussieu, 75005 Paris, France 

Abstract 

We investigate the properties of differential algebras generated by an operator d satisfying the 
property d N = 0 instead of d2 = 0 as in the usual case. Several examples of realizations of such . 
differential algebras are given, either in the context of ZN-graded N x N matrix algebras, or as a 
generalized differential calculus on manifolds. 
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1. Introduction 

In several recently published papers [l-4,7] the Z3-graded algebras have been investi- 
gated. Some of them were associative, like the Zj-graded generalizations of Grassmann 
and Clifford algebras, some of them were not, like the algebra of cubic matrices (31, which 
is a ternary algebra, with the internal composition m : A @ A 18 A --f A which in general 
cannot be induced by a binary composition law. In [5,6] a more general notion of n-algebras 

has been introduced, investigated, and some applications in mathematical physics have been 
suggested. Finally, in [9], a formal differential calculus with exterior derivation d satisfying 
d3 = 0 has been introduced and a particular model has been investigated. It leads to an 
interesting version of a gauge theory with a 3-form replacing the usual curvature represented 
by a 2-form, and to higher-order differential equations for the gauge fields. 

It turns out that such a scheme can be easily extended to a more general case when one 
postulates d N = 0 The differential algebra generated by the entities dxk, d2xk, d”x”, 
. . . dfN-‘)xk has a natural ZN-grading [lo]. 
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By imposing some consistent (but by no means unique) cyclic commutation relations on 
the expressions of order N it can be made finite. In particular, we discuss the realization in 
which the operator d satisties a q-graded Leibniz rule: 

d(4) = (dw)$ + qiw’,(d4), 

where q is a primitive Nth root of unity, i.e. q ’ = 1 butq” # Ifork= 1,2 ,..., N-l.The 
products of any two forms resulting in a form of highest order (N) (i.e. with deg(w) = p, 
and deg($) = (N - p), so that w$ is of ZN-degree N = Ornod( satisfy the following 
commutation relations: 

It is also possible to generalize the notions of p-cycles and p-boundaries, and to compute 
their generalized cohomologies. Also a generalized version of Stokes’ theorem can be put 
forward in quite an obvious way, namely, for a 1 -form w one has 

j” w= /- &,...+N-2w=/- dN-lw. 

#GlC ;jN-?C ilC C 

(1) 

In what follows, we show how such differential calculus can be realizedon complex matrix 
algebras, then on differential manifolds; finally, we give the construction of universal model 
of such differential calculus based on the tensor powers of given unital algebra. 

2. Algebraic differential calculus of higher-order 

Consider the algebra A = Matj(C) of 3 x 3 complex matrices. It can be naturally 
represented as a direct sum of three linear subspaces, A = A0 @ Al @ A?, defined as 
follows: 

Arbitrary matrices belonging to dk, k = 0, 1,2, are said to have respective degree 0, 1 
and 2. It is easy to check that these degrees add up mod3 under the associative matrix 
multiplication law. 

Let B, C denote two matrices whose degree are b and c, respectively. We can define the 
Z3- graded commutator [B, C] as follows: 

[B, C’]zn := BC - jb”CB, (3) 

where j = e2Xi/3, j2 = e47Ci/3, j3 = 

does not satisfy the Jacobi identity). 
sake of simplicity 

1, I+ j + j2 = 0 (note that this Zs-graded commutator 
Let q be a matrix of degree 1; we can choose for the 
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0 1 0 
r7= 001. 

i 1 

(4) 
1 0 0 

With the help of the matrix n we can define a formal “differential” on the Z1-graded algebra 
of 3 matrices as follows: 

dB := ]n, Blz-, = nB - jbBn. (5) 

It is easy to show that d(BC) = (dB)C + jbB(dC) and that d’ = 0. The first identity 
is trivial, whereas the last one follows from the fact that Y$ = Id does commute with all 
the elements of the algebra: 

d”B = ]v. 1~. ]r7. ~~~~~~~~~ 3 = [rl, [rl, (r7 B - jb~rl)l~Jz, = ‘. 

= j”( 1 + j + j*)[...] + $B - Bq3 = 0 (6) 

(because 17” - I, and commutes with all the elements of A). 
A similar construction can be performed in the case of n @ n complex matrices, with q 

being a primitive nth root of unity, q” = 1. Such an algebra is naturally Z,z-graded, with 
diagonal mntrices representing degree 0, and degree I elements represented by the matrices 
whose only n non-vanishing entries are placed directly above the main diagonal (n - I ) 
elements, the last one (the nth) placed in the lowest left case. This gives, for II = 4, four 
sets of matrices generated by the consecutive powers of the following matrix M: 

E dl, M’ E A?. M3 E d3, M’ E do. (7) 

M’ spans the set of diagonal matrices to which we attribute degree 0. The degrees 0. I. 2 
and 3 add mod 4 under matrix multiplication. Now, a graded q-derivation of degree I can 
be defined as 

DerA(B) = [A, B]z,, = AB - (q)deg’B’BA 

with A an arbitrary degree 1 matrix; we can choose q = i = ein/2. 
The same definition can be written as 

ad,(A)(B) = AB - qdegcB)BA. 

Let us identify the matrices of Z3-degree 0, 1 and 2 as the O-forms, l-forms and 2-forms. 
respectively, and their exterior Zs-graded differentials as the Zs-graded commutators with 
the matrix n, e.g. with 
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we have 

0 0 (B - ja) 
dw = ]rl, olz3 = rlw - jq = (Y - jP) 0 0 

0 (a-jy) 0 

so that here w is of degree 1 and dw is of degree 2. 
In the space of complex 3 x 3 matrices we can represent not only the p-forms (with 

p = 0, I and 2), but also chains over which these forms can be formally integrated. We 
define the p-chains as matrices whose degree is (3 - P)mod(3), e.g. a chain C of degree 2 
is given by a matrix belonging to At. 

We shall define the operation of taking the border of a chain as the Z3-graded commutator 
of the corresponding matrix with the matrix ,I~ whose degree is 2: 

aC = ]VT, C] = nT C - j3-deg(C)CVT. (8) 

It is easy to see that a3C = 0 for any C, using the fact that (Q~>~ = 1. Defining the integral 
of a p-form over a p-chain C as the trace of the matrix CTw: 

s 
w = (C, o) = Tr(CTW), (9) 

c 

one easily proves the following generalization of Stokes’ formula: 

(a*c, w) = (ac, dw) = (C, d*w). 

For, take for example i, dw, which is by definition 

s 
dw = Tr[CT dw] = Tr[CT(no - j’w’mn)] = Tr[CTno - jl”lCTwn]. 

c 

(IO) 

(II) 

Let us compute (aCw): according to the definition, 

(Xw) = Tr[(X)Tw] = Tr[(qTC - j3-‘ClC~T)To] 

= Tr[(CTq - j2.1ClnCT)W] = Tr[CTr]o - j2.1clnCTw], (12) 

where we use the shortened notation lo] = deg(w) and ICI = deg(C). 
Now, the first term is exactly as in the previous formula, whereas the second term is equal 

t0 -J ‘3-lclTr[CTwn] because the trace of a product of any number of matrices is invariant 
under a cyclic permutation; therefore, the second term will be equal to the second term of 
the previous formula, if /Cl) + JwI = 3, which we assumed in our definition. 

The same scheme can be used for any higher grading, e.g. in the case of the Z4-graded 
algebra of 4 x 4 matrices introduced in the beginning of this Section, we may choose any 
degree 1 matrix as n. 

Then the matrix nT is of degree 3, and in order for our generalization of Stokes’ formula 
to hold, we should define a p-chain as a matrix C whose degree is (4 - P)~~(~), and in 
a more genera1 case of ZN-graded matrix differential algebra, as a (N - P)modN-degree 
matrix. 
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It is not difficult to find in each of the components of the Z3-graded 3 x 3 complex matrices 
the subspaces defined as Ker(d), Ker(d*), Im(d) and Im(d2), with usual inclusions: 

Im(d) c Ker(d*), Im(d2) c Ker(d), 

Im(d’) c Im(d), Ker(d) c Ker(d*). 

A O-form must be represented by a O-degree (diagonal) 3 x 3 matrix: 

.f’l 0 0 
.f‘= 0 f* 0 , 

C i 0 0 f3 

whose differential is 

C 

0 fi - fl 0 

df = v.f - .f’rl = 0 0 .R - fz 

fl - .f3 0 0 1 

so that the condition for df = 0 amounts to ft = fi = fj. 
The second differential of f, d2 f, is equal to 

0 0 j 

d*.f. = n df - j df rl = (f~ + j.f2 + j2f31 
( 1 

1 0 0 
0 j2 0 

so that the condition d2 f = 0 is equivalent with ,f’l + jf2 + j’f3 = 0. This equation has 
two independent solutions: 

.f’~ = .fz = .f3 and fl = j*f2 = j,f3. 

The first solution implies d f = 0, and a fortiori d* f = 0, whereas the second implies 
d* f = 0 but d f # 0. Therefore, in the O-degree sector, we have Ker(d) c Ker(d2), but 
Ker(d) # Ker(d*) which is true also for the other two sectors. 

A similar situation is observed in the sector of degree 1 (the 1 -forms); the identification 
of matrices representing Ker(d), Ker(d*), Im(d), etc. in the case of I-, 2- and 3-forms is a 
simple exercise. 

At the end, one can see that the total space of p-forms covers the entire space of complex 
3 x 3 matrices: 

dim(A) = dim(A’) + dim(A’) + dim(A*) = 3 + 3 + 3 = 9 

with the following structure with respect to the operators d and d2: 

Ker(d)=((k % e)-[! i ji).[ji i A)), 

Ker(d’)=Ker(d)*((~ i j!z),(8 $ 8),(: 8 i)). 
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It is also easy to show that one has in this case 

Im(d*) = Ker(d) and Im(d) = Ker(d*). 

More generally, if E is a vector space equipped with an endomorphism d satisfying 
dN = 0 one has Im(dN-” 
Ker(d’“);Im(d 

) c Ker(dn) so one can introduce the vector spaces H(“) = 
N-r,) for n = 1, . . . , N - 1. The vector spaces H(“) generalize the homology; 

they are not independent and one can show (see [ 111) that they are connected by a finite 
family of exact hexagons of homomorphisms for N > 3. 

A formal algebraic analogue of connection and curvature forms have been discussed 
elsewhere (see [9]). In the next section we shall show how such Z,,-graded exterior calculus 
may be realized on a differential manifold. 

3. N-graded differential calculus on a manifold 

Let us show how a graded differential calculus with d N = 0 can be defined and developed 
on a manifold, generalizing the usual exterior differential by replacing - 1 by q, a primitive 
Nth root of unity (N L 2). 

Let M be a CO” differential manifold of dimension D, and let F’(M) be the algebra of 
C”O functions over M. The operator d maps 3(M) into the linear space A’ of l-forms 
which is a left module over the algebra F(M). As in the usual case, we suppose that A’ 
is spanned locally by D l-forms dtk which are the first differentials of local coordinates 
tk, k = 1.2, . . , D, which belong to F(M). Now, in the usual Z2-graded case one has 
d2tk = 0. Because this fact should be independent of the choice of local coordinate system, 
d* should vanish when applied to any function of the coordinates <“. 

If we introduce the q-graded Leibniz rule as usual, by postulating the existence of an 
associative product for the elements of A, and setting 

d(@) = (dw)$ + qiw’,(d$), 

then for a function f we shall define 

df(YY = 5 dtk E A’. 

In the usual Z2-graded case we require that d*f = 0. This leads to the following 
equation: 

d*f = $$ 8.f 21 dck dt’ + G d c = 0. (13) 

The second term vanishes by virtue of the fact that d*c’ = 0 by definition; therefore the 
first one has to vanish always, too. This is achieved by stating that the associative product 
of l-forms dek d{’ must be antisymmetric, i.e. that we have 
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(To underline this fact one usually denotes the so defined “exterior” product by inserting a 
wedge sign, dt” A dt’ = -d<’ A d(k.) 

Now, let q be a primitive Nth root of unity, q N = 1 butq # l.Ifweimposeonthe . 
operator d the q-graded Leibniz rule as above, and if we require that d” = 0, we can 
impose consistently the followin g minimal set of generalized commutation rules on the 
products of forms of order N: 

As a corollary, one can conjecture that for N > 3 any product of more than N such I -forms 
must vanish. For small values of N(c 20) this can be easily seen by performing several 
consecutive permutations and using the associativity of the product of forms. For example. 
for N = 3. 

and because j4 = J # 1, the whole expression must vanish. 
As now d’ # 0, d” # O..... dN-’ # 0. we must introduce new independent 

differentials 

d’t”, d”t’, . . . , dN-‘6“. 

Each kind of these new “I @-tns of degree m ” with m = I. 2 . (N - 1) spans a basis of 
a D-dimensional linear space. 

We shall assume that all the products of forms whose total degree is less than N are 
independent and span new modules over the algebra of functions with appropriate dimen- 
sions, e.g. the products of degree 2, dc” d{“‘, span a D’-dimensional linear space; so do 
the products d’<” d<” and, independently, dern d’ck (if D > 3), and so on. On the other 
hand, all other products of degree N must obey the following commutation relations, which 
are compatible with the cyclic commutation relations for the product of N l-forms, for 
example: 

and so on. 
Finally, we shall assume that not only the products of N + I and more l-forms vanish. 

but along with them, also any other products of all kinds of forms whose total degree is 
greater than N. This additional assumption is necessary in order to ensure the coordinate- 
independent character of the condition d N - 0 As a matter of fact, under a coordinate - 
change all the products of forms of given order mix up and transform into each other, e.g. the 
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terms like dej dck de’ with the terms of the type d2ck dcl, and similarly for higher-order 
terms. 

Let us show now the explicit expressions for dpf(tk). Using the rules introduced above, 
we have 

d2f = a2f - dtk dt’ + $ d2tk, apap 

$f = a3f 
atkapap 

dtk d$’ dt”’ + $$(d26’ de’ + q dck d2t’) 

a2f 
+ atla<k 

- d@ d2ek + $ d3tk, 

d4 f = a&,,, f dck dc’ dc”’ de” 

+ a,&,, f [d2tk dt’ dc”’ + (1 + q) d{k d2t’ dtm 

+ (1 + q + q2) dtk d@ d2tm] 

+ a,: f [d3ek d<’ + (1 + 4 + q2) dck d3c’ 

+ (1 + q + q2) d2tk d2{‘] + &f d4ck 

and so forth. 
It is easy to prove that for a given N it is enough to assume dNck = 0 and the N-cyclic 

commutation rule 

dck’ dck’ dck’ , . . dck” = 4 d.+ dck’ . . &qk” d<k’ 

implemented with its generalization for any product of two exterior forms of the total order 
adding up to N, 

w@ = 4 P(N-P)~~ = q-~2$, 

whenever deg(w) = p and deg(4) = N - p, in order to ensure that dNf = 0, and in 
general, dNw = 0 for any differential form w. 

The dimension of an N-graded differential algebra with D generators dtk (k, 1. . . = 
1,2, . . . ) D) cannot be given by any simple and concise formula, because it depends cru- 
cially on whether N is a prime number or not. But it is easy to determine this dimension 
for the first few cases, N = 3,4,5. 

For example, in the Zs-graded case it is easy to check that taking into account the 
commutation relations that hold for the products of forms with total degree equal to 3, we 
have the following basis in the space of forms: 

1 O-form(l), D l-forms dck, D2 2-forms dtk dtm, 

besides, we have also 

;(D” - D) 3-formsdtk de’ dtm, D forms d2ek, and D2 forms d2(k dtm, 

which gives the total dimension of the algebra = 1 + 20 f 2 D2 + i ( D3 - D). 
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The case of N = 4 is more complicated, because 4 is not a prime number. Here the cyclic 
q-commutation relation: 

implies also the anticommutation rule for the couples d<” de”‘. Therefore, the dimension 
of the degree 4 products of the dtrn is now i[D’ - D - D(D - I)] = ;(D” - D’). 
because now not only all the D,fourrh powem like (dc”)” must identically vanish. but also 
the D(D - I) expressions of the type (dck dc’)(dt” d<‘) (with k # I) must vanish, too. 
because in general 

(dc” dt’)(dCm d<“) = -(dcm dt”)(dck d(l). 

The total dimension of the differential algebra generated by the forms 

d<! d’[‘. d3cm 

is therefore equal to i(D” + 8D3 + 17D2 + 1OD + 4). 
For the case N = 5(d5 = 0) the computation is again simpler, because 5 is a prime 

number, and the dimension of the fifth-order products of 1 -forms is simply f ( D5 - D) = 
f(D - l)D(D + 1)(D2 + 1). 

The dimension of the subspace of Nth order products in the differential dN = 0 algebra 
spanned by D independent generators is given by the formula (DN - D)/N if N is a prime 
number; it is much more complicated if it is not. 

4. Universal N-graded differential calculus 

Our aim now is to construct the universal differential calculus for the higher-order dif- 
ferentials, the examples of which have been shown in the previous section. 

Let A be an associative algebra with unit element and let R: = $~=u Qk. be a graded 
associative algebra with 52’ = A; the elements of Qk are said to be of degree k. 

A q-differential is a linear mapping of degree 1 of R into itself d : Qk - f2”+’ such 
that if (Y E Qk and /I E SP, then 

d(cr@) = (da)B + qka(dB) and dN = 0 (16) 

in the case when q is an Nth root of unity (i.e. qN = 1). 
A graded algebra equipped with a q-differential will be called a graded q-diflerenticrl 

algebra or simply a q-differential algebra whenever no confusion arises and a q-differential 
algebra with A = 62’ as above will be refer red to as a q-diflerential calculus over A. 

Now we would like to define a universal q-d[fferential calculus for the differentials of 
this sort. Let us notice that the q-differential induces a derivation of A into Qt. Let us recall 
in this context the construction of the universal derivation. 

Let G’f (A) c A @ A be the kernel of the product m : A 63 A + A and let d, : A - 
C2f (A) be defined by: 

d,f’ = 1 ~3 .f’ - .f ~3 1. 



244 M. Dubois-Violette, R. Kerner/Journal qf Geomrtry and Physics 23 (1997) 235-246 

It is clear that &(A) is a bimodule over A and it is easy to check that d, is a 
derivation. 

The derivation d, : A + Szf (A) satisfies the following universal property: for any bi- 
module Sz ’ over A and any derivation of A into C2 ’ , there exists a unique homomorphism 
id of the bimodules 52,’ (A) into R’, such that d = id o d,. This universal property charac- 
terizes the pair (Qj (A), d,) up to an isomorphism. 

Let 7”(A) = A@‘“+’ and ‘T’(A) = A. In other words, I”(A) = @>(A 18 A) so that 
I(A) = @,,7”($1) is the tensor algebra over A of the bimodule A @ A, with the obvious 
inclusion I”(A) 8~ I”(A) c 7”+“(A). 

Now we can introduce the q-derivation on this algebra as follows. Let 

.jo @ .fi @ . . @ .fi, E 7” (A). 

One has 

.fo @ f’l @ . . @ fn = ,fo(l 8 l).fl(l @ l),f2(1 @ 1) . . (1 @ l).fil, 

because one has fu 18 1 = .fi @ 1 and (1 @ l)fl = 18 jj , etc. 
For the action of d on A we choose the universal derivation combined with the inclusion 

Q:(A) c I’(A), i.e. dx = [l @ 1,x] forx E A. We defined on 1~3 1 E 7’(A) by 
setting 

d(1 @ 1) = 1 @ 18 1. (17) 

Now, as we can write 1 @ 18 1 = (18 l)(l @ 1) then, denoting 1 @ 1 = e, we can write 
d being a q-derivation: 

de = e2, d2e = de e + q e de = d(e2), (18) 

which implies that de e = e de and we can write 

d2e = (1 + q)e de = [214e de. 

Note that have we use the notation of “quantum integer”, in which 

[Nly = 1 +q+q2+...+q(N-‘) 

Therefore, we can continue: 

d3e = (1 + q) d(e3) = (I + q)( 1 + q + q2)e2 de 

= (1 + q)(l + q + q2)e4 = [21y[31,e” 

and so on. By induction on N one has 

d’e = [N!],e’v’ de = [N!],e’+‘, dNx = [N!lqeN-’ dx. (19) 

If-q N = 1,onehas 

[Nlq := 1 + q + q2 +. . + qcN-” = 0. 
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which implies [N!], = 0 and therefore 

dNe = 0. dNx = 0 

23s 

The generalized Leibniz formula for the Nth differential can be written as 

dN@fi) = 5 ; ql~I(N-fi)dk(a!)dN-i(P). 

I=0 [ 1 q 

where we use the notation 

N L-1 - [N!L, 
k q [k!l,[(N - k)!l,l’ 

Note that if q is a primitive root of 1. then dN is also a derivation (whereas other powers of 
d are not!), which implies dN = 0 since d” = 0 on the generators. 

Let L’,,(A) be the smallest q-differential subalgebra of I(A) which contains A. This 
graded q-differential algebra [ 1 I] is characterized, up to an isomorphism. by the following 
universal property: 

For any homomorphism @ of unital algebra A + Go where R” is the subalgebra 
of elements of degree zero of a q-differential algebra fi = @‘&R” there is a unique 
homomorphism of q-differential algebras of Q,(A) into Q which extends 0. 

This is why a(, (A) will be called a universal y-d#erential calculus over A. For N = 2 
(q = - 1) this coincides [ 121 with the standard universal differential calculus over A 

It is worthwhile to note that there exists another possible definition of the universal 
differential of de, namely, instead of de = e2 we may choose 

which implies 

d”ve = [N!],(-q)NP’ d’e eCN-‘) = [N!],(-q)NpNf’ (20) 

and for .I- E A 

dlR’.x = [N!],(-l)N-’ dx eNP’ (21) 

and therefore again dtN = 0. However the q-differential subalgebra generated by A is still 
isomorphic to Sz, (A). 
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